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Application of kinetic methods in studying 
the defect concentrations and their 
mobility in transition metal oxides 
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A critical discussion of two new methods for investigating the concentration and mobility 
of point defects in the crystalline lattice of metal oxides is presented. These methods are 
based on kinetic measurements of metal oxidation in specialized conditions. Using the 
results obtained on the cobalt-cobaltous oxide-oxygen model system, it has been shown 
that both these methods lead to correct results being simultaneously more simple and 
accurate than the classical ones. 

1. In t roduct ion 
Transition metal oxides have found an increasing 
application in modern technology, particularly 
as semiconducting and refractory materials and 
as catalysts in heavy organic synthesis [1-3 ]. The 
semiconducting and catalytic properties, as well 
as many other valuable properties of these 
oxides, are due to the occurrence in their 
crystalline lattice of thermodynamically 
reversible point defects [1-4]. In contrast to other 
types of defects in solids, point defects are 
capable of migration in a crystal by diffusion 
and their concentration is a function of the 
temperature and pressure of the surrounding 
atmosphere. 

The defect structure in transition metal oxides 
is limited in most cases to only one sublattice 
which results in deviations from stoichiometry of 
these materials. The two limiting cases of 
deviations from stoichiometry in transition metal 
oxides, corresponding to four different types of 
defect structure in these materials, are shown 
schematically in Fig. 1. 

It follows from this that concentration of 
point defects predominating under given con- 
ditions in the crystal lattice of metal oxides is 
directly related to deviations from stoichiometry. 
Hence, by studying the extent of the dependence 
of these deviations on temperature and equilib- 
rium oxygen pressure, one obtains direct 
information about concentration, degree of 
ionization and thermodynamic properties of the 
defects predominant in crystal lattice. 

However, it should be emphasized that 
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Figure 1 Defec t  s t ruc tu res  in meta l  oxides.  

experimental problems involved in such studies 
are very difficult as the defect concentration, and 
thus deviations from stoichiometry in the oxides 
under consideration, are usually so small that 
their determination with the required accuracy 
demands application of very precise experimental 
methods. Among several methods elaborated for 
this purpose, the one most widely used is 
provided by high temperature vacuum micro- 
gravimetry in which deviations from stoichi- 
ometry are determined by measuring the mass 
changes occurring on changing the equilibrium 
oxygen pressure or temperature. Despite the 
very high accuracy of modern microgravimetric 
apparatus, the results of these studies are affected 
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by considerable errors resulting (as already 
mentioned) from the very small values of the 
deviations from stoichiometry in metal oxides. 

A similar situation exists in studies on the 
mobility of point defects in the crystalline 
lattice of metal oxides. This mobility is measured 
by the self diffusion and chemical diffusion 
coefficients. The former is a macroscopic 
measure of the lattice mobility at thermodynamic 
equilibrium of a crystal with its surrounding 
atmosphere and the latter is a microscopic 
measure of the mobility of a particular defect 
in conditions which are far from equilibrium, 
i.e. when a gradient of defect concentration 
is present in the crystal. 

The two diffusion coefficients are interrelated 
by the following Equation [2, 5, 6]: 

1 
5 =  (1 + p )  D ~  (1) 

where/3 is a chemical diffusion coefficient, D a 
seff-diffusion coefficient of a metal or oxygen, 
depending on the type of the defect structure, 
Nd is a defect concentration given in mol 
fractions, and p is the effective charge of a defect 
with respect to the lattice. 

In the present paper a critical discussion of 
two new methods for investigating the concentra- 
tion and mobility of point defects in the crystal- 
line lattice of metal oxides is presented. These 
methods are based on kinetic measurements of 
metal oxidation in specialized conditions. Using 
the results obtained in this laboratory on the 
cobalt-cobaltous oxide-oxygen model system, 
it has been shown that both these methods lead 
to correct results which are simultaneously more 
simple and accurate than the classical ones [7- 
131. 

2. The  differential kinetic method 
Growth of a mono-phasic, compact single layer 
scale on a metal surface in isothermal and iso- 
baric conditions follows a parabolic rate law 
[14, 15]: 

x ~ = 2kp't + C (2) 

where x is a thickness of a scale at time t, 
k v' a parabolic rate constant, C a constant, the 
value of which is related to deviations from the 
parabolic course of the reaction in its initial 
period. The slowest partial process determining 
the rate of the scale growth is the diffusion of 
metal or oxygen ions in the oxide phase, 
occurring through point defects in the crystal 
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lattice of this phase [15-18]. The parabolic rate 
constant of the oxidation is then closely related 
to the self-diffusion coefficient of a metal, DMe, 
or oxygen, Do, in the oxide, which forms a 
scale under given conditions. This relationship 
was described in 1951 by Wagner [19]. For oxide 
scales with defects in the cation sublattice 
(Mel-~ O or Mel+~O)Wagner's general equation 
assumes the form: 

so0 kv' = DMe d In ao(D~e >> Do). (3) 
a01 

For the scales with defects in the anion sub- 
lattice, MeOl-~ or MeO~+~ the same equation 
can be written as: 

f~176 k v' = D O d In ao(Do >> D~e) (4) 
a0 

where a 0, and a0" are oxygen activities at 
internal and external surface of the scale re- 
spectively. ZMe is the valency of a metal present 
in the scale. 

To calculate coefficients DMe or D o one has to 
integrate Equation 3 or 4. These coefficients 
depend, however, on defect concentration and 
hence on the oxygen activity (pressure); for the 
integration it is necessary, therefore, to know the 
dependence of Due or D o on a o or Po2. The 
character of these dependencies cannot be 
estimated apriori and therefore Equations 3 and 
4 have not been used for calculation of the 
diffusion coefficients for many years. In 1965 
Fueki and Wagner [20] showed that the solution 
of this problem for oxides of the Mel-~O or 
MeOl+~ type is possible by differentiating 
Equation 3 or 4. 

These authors have drawn attention to the 
fact that the equations under discussion are 
composed of two terms, one of which is a func- 
tion of a0" whereas the other depends on a0'. At 
constant temperature the activity of oxygen at 
the scale/metal interphase (a0') is constant 
independent of the external pressure of oxygen 
since, in agreement with experimentally con- 
firmed assumptions of the Wagner theory 
[12, 21-25], a state of local thermodynamic 
equilibrium is achieved at this phase boundary. 
Equations 3 and 4 can be then differentiated 
with respect to a0": 

dln a"0 ] DMe (5) 
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dkv' 
dln ao" j ao' = D o .  (6) 

The activity of oxygen can then be replaced by 
its pressure: 

dln a 0 = ldlnpo2 (7) 

which leads to the following dependencies: 

dkp' / Zl~ie 
, = DMe (8) 

din P0~ J ~o~ 4 

and 

{ dkp' 
~ , . ~ , ,  , = �89 D o (9) 

\din po~ J ~o2 

It follows from these equations that a self- 
diffusion coefficient of a metal or oxygen in an 
oxide, which forms a scale on the metal at a 
given temperature, can be determined as being 
dependent on the oxygen pressure by measure- 
ment of the parabolic rate constant of metal 
oxidation, performed at different oxygen pres- 
sures (different values of PO2H). By plotting k v' 
versus In po2" the value of the ratio dkv'/dln 
po2" directly for any value of oxygen pressure in 
the studied range and thus the respective values 
of DMe or D 0. It should be noted that the values 
of  the diffusion coefficients obtained in this way 
correspond to equilibrium of the studied oxide 
with oxygen at the experimental pressure. 

To ensure success in these studies, it is im- 
portant that over the whole period during which 
the kinetic curve is registered, the scale formed 
is compact, composed of one layer and adheres 
closely to the metallic core. Only then does the 
metal-oxide-oxygen system fulfil all assump- 
tions of the Wagner theory which underly Equa- 
tions 8 and 9. Mrowec and co-workers [26-29] 
have shown that by appropriate selection of shape 
and size of the metal samples which are oxidized, 
this is possible. In particular, it has been de- 
monstrated that the most favourable conditions 
for plastic flow of the scale, and hence for preser- 
vation of its full contact with the surface of 
the metallic core, exist when samples which have 
the form of fiat discs are oxidized [12, 28-30]. 
The ratio of the disc thickness to radius should 
be small and selected for each case of a given 
system and reaction conditions. 

Experimental determination of the parabolic 
rate constant, kv' , by direct measurement is 
inconvenient and produces inaccurate results. In 
order to calculate kv' , it is necessary to deter- 

mine the thickness of the scale after various 
periods of metal oxidation. This requires the 
performance of many experiments in which 
different metal samples are oxidized for different 
periods of time. To avoid such time-consuming 
procedures the parabolic Tammann's constant, 
kv' ,  is calculated from the results of experiments 
in which the gains in weight of the oxidized 
sample are registered continuously during the 
reaction. In such experiments the course of the 
parabolic reaction is described by the familiar 
Pilling-Bedworth equation [31 ] : 

(7; - -  = kvHt + C (10) 

where A m  is the gain in weight after time, t, q is 
the surface area of the metal, kv H is a Pilling- 
Bedworth parabolic rate constant of oxidation 
and C is a constant. 

At the present state of microgravimetry, which 
allows the determination of the increases in 
weight with an accuracy of the order of 10 -6 to 
10 -v g, the parabolic rate constant, kv", can be 
determined with very high accuracy. It should be 
noted, however, that in calculations of the unit 
weight gain (Am~q) one should take into account 
the changes in the surface area of the metallic 
core which occur as the oxidation process 
proceeds. If these changes are ignored, applica- 
tion to Equation 10 of an unchanged surface 
area of the metallic core, equal to the initial 
surface area (q = q0 = constant) gives rise, on 
the one hand, to apparent deviations from the 
parabolic reaction course and, on the other, to 
values of kp" lower than normal [12, 28-30]. 
Mrowec and Stoktosa [29, 30] have shown that 
the above error may be eliminated by introducing 
into Equation 10 a correction factor, which 
consists in replacing of the unchanged metal 
surface area by a hypothetical surface, qX. The 
latter can be calculated for a given increase in 
mass by the method described by these authors 
[29, 30]. 

Knowing kp", the Tammann's constant may 
be calculated with the aid of the equation given 
by Wagner [32]: 

(11) kv,  = 1 \ A o  ] 

where Vis an equivalent volume of an oxide, z.~ 
is a valency of oxygen ( ~  2); Ao atomic weight 
of oxygen. 

The Fueki-Wagner method under discussion 
has been verified taking the Co-COl ~O-O2 

1963 



S T A N I S I ~ A W  M R O W E C  

system as an example [13, 33-35]. This system 
has been chosen because cobaltous oxide is, as 
yet, the only material in which the structure, 
concentration and mobility of point defects 
have been studied in detail [36-43]. This oxide 
exhibits relatively large deviations from stoi- 
chiometry, originating from the existence of 
vacancies in the cation sublattice (Col ~O), 
owing to which the defect concentration, its 
temperature and oxygen pressure dependence 
have been determined with relatively high 
accuracy by thermogravimetric techniques [37, 
38, 42]. With equally high precision the self- 
diffusion coefficients of cobalt in this oxide have 
been determined, by radioisotopic methods, as 
being dependent on temperature and the 
equilibrium oxygen pressure [36-40]. This has 
been possible owing to the facts that on the one 
hand, mobility of cationic vacancies [41, 43] and 
their concentration are relatively high, which 
gives correspondingly high values of the self- 
diffusion coefficients of cobalt in this oxide, and 
on the other, the radioisotope of cobalt, 6~ 
shows a very long half-life time which facilitates 
accuracy of the results. 

The kinetics of cobalt oxidation have been 
studied in the temperature range 950 to 1300~ 
and oxygen pressure range 10 -5 to 1 atm with 
thermogravimetric [13, 33] and volumetric 
[34, 35] methods. Flat discs of spectrally pure 
cobalt were used in these studies, selecting the 
dimensions of the samples in such a way as to 
ensure full contact of the scale with the metallic 
core during the whole period of determination of 
the kinetic curve. In agreement with the results 
reported by the other authors [44-47] it has been 
found that oxidation of cobalt follows the 
parabolic rate law and growth of compact, 
mono-phasic scale, composed of Co1-~O, pro- 
ceeds by outward diffusion of the metal (a 
platinum marker at the metal/scale phase 
boundary). 

Parabolic rate constants of oxidation were 
calculated taking into account the changes in the 
metallic core surface with the Mrowec-Stoktosa 
method [29]. The parabolic plots of cobalt 
oxidation at 1000~ for several oxygen pres- 
sures are presented in Fig. 2. The dependence 
of the parabolic rate constant on log oxygen 
pressure at this temperature is given in Fig. 3. 

By graphical differentiation of this type of 
curve, plotted for several temperatures, the 
coefficients of Dco as a function of temperature 
and oxygen pressure were calculated from 
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Figure 2 Parabolic plots of cobalt oxidation at 1050~ for 
several oxygen pressures. 
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Figure 3 The oxygen pressure dependence of the parabolic 
rate constant of cobalt oxidation at 1050~ (semi- 
logarithmic plot). 

Equation 8. Selected results of these calculations 
are given in Fig. 4 in the Arrhenius system of 
co-ordinates for several values of oxygen 
pressure. For comparison, the same figure shows 
the results of radioisotopic studies of Chen et al. 
[40] and Carter and Richardson [36], taking 
into account the correlation effect. The tracer 
diffusion coefficients, Dco t, determined by these 
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Figure 4 The temperature dependence of  the self-diffusion 
coefficient of  cobalt in cobaltous oxide for several oxygen 
pressures. 

authors with the use of the radioisotope G~ 
were transformed into self-diffusion coefficients, 
Deo, using the equation: 

1 
Dco = Dco t a? (12) 

assuming the correlation factor f = 0.78 [48]. 
As seen from the data presented in Fig. 4, 

agreement between the values of self-diffusion 
coefficients of cobalt in cobaltous oxide deter- 
mined indirectly by the Fueki-Wagner method 
and the values obtained in radioisotopic studies 
is very good. 

To give a clearer illustration of this the results 
of kinetic and radioisotopic studies are shown 
below in the form of the empirical relations 
between the coefficient Dco and temperature for 
an oxygen pressure of 0.2 atm. 

Dco  t 
f - D c o =  5.0 x 10 -3 

exp ( 384--00/ 
RT ] 

Dco t 

f 

cm 2 sec -1 (13) 

(Chen et al.) 

- Dco = 5.2 • 10 -a 

( 38-~176176 
exp R T  ] cm2 sec-1 (14) 

(Carter and Richardson) 

Dee = 5.0 x 10 -3 

( 37 800 / 
exp ~R--T ] cm2 sec-1 (15) 

(Mrowec et al.) 

Equations 13 and 14 present results of radio- 
isotopic studies, the correlation effect being taken 
into account, and Equation 15 the data obtained 
by Fueki-Wagner method. The agreement 
presented above indicates that the kinetic method 
can be successfully applied to the determi- 
nation of self-diffusion coefficients in metal 
oxides. It should be noted at the same time that 
the kinetic method is considerably simpler than 
radioisotopic methods and the results obtained 
by it are more accurate. 

Toc 

t/) 
ol 2c, 

E 
O 

I{3 
Crl 

5 
-i 

=72 

1050 1000 950 900 850 

�9 - M r o w e c  e t  o [  

o " - . . ~  o - Moore  et  al. 

o 

>% 
o V5 ~8o o~4 o~8 

1 T" 103 K 
Figure 5 The temperature dependence of  the self-diffusion 
coefficient of  copper in cuprous oxide at an oxygen 
pressure of  1.3 x 10 4 atm. 

In order to illustrate the precision of the 
kinetic method Fig. 5 show results of studies on 
self-diffusion of copper in cuprous oxide, 
Cu2_uO, obtained with kinetic [12] and radio- 
isotopic [49] methods. It follows from this plot 
that the error made in measurements with the 
latter method exceeds 50 ~.  This is due among 
other factors, to the fact that the radioisotope 
64Cu has a very short half-life (Tlj 2 = 12 h). The 
results obtained with the kinetic method, on the 
other hand, show a reproducibility equally high 
as that reported for cobaltous oxide (where the 
maximum error does not exceed 5 ~).  

Finally, it is worth mentioning that calcula- 
tions of self-diffusion coefficients in metal 
oxides from kinetic measurements can be 
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TABLE I Self-diffusion coefficients of cobalt and copper in cobaltous and cuprous oxides calculated from kinetic 
data with the aid of Equations 8 and 16. Temperature for Col-yO 1050 ~ C; and for Cu2-uO 1000~ 

Pressure po/ Dco x 10 9 (cm 2 sec -1) Pressure po/ 
(arm) (atm) 

Values calculated with aid of 
Equation 8 Equation 16 

D c u  x l 0  s ( c m  2 sec  -~) 

Values calculated with aid of: 
Equation 8 Equation 16 

2.63 x 10 -3 0 .75  0 .70  6 .6  x 1L 3 4 .6  4 .2  

5 .26  x l g  -3 0 .99  0 .85  1 .32 x 10 .2  5 .4  5.2 

1.05 X 10 -2 1.19 1.05 2 .63 x 1L -2 6.1 6.3 

2 .09  X 102 1 .40 1.27 3.95 X 1L -2 7.3 6 .9  

4 .17  X 1L -2 1.72 1.53 5 .38 X 1L -2 7 .6  7.5 

8 .32  X 1L -~ 2 .14  1.86 7 .95 X 1L -~ 8.0 8.5 

2 .10  X 1L -1 2 .80  2 .42  1.00 X 1L -1 8.3 8.7 

3 .32  x 1L -1 3 .04  2.71 

considerably simplified by assuming that the 
gradient of the defect concentration in the 
growing layer of the oxide scale on metal has a 
linear character. In this case, the Wagner 
equations (Equations 3 and 4) can be integrated 
to yield a simple relation between the parabolic 
rate constant of oxidation and self-diffusion 
coefficient of the more mobile component of the 
crystal lattice of the oxide [15, 18]: 

k v' = (1 + p)D (16) 

where p is an effective charge of the defect with 
respect to the lattice, D is the self-diffusion 
coefficient of the metal, in the case of scales of 
Me,_~O and Me~+~O type, or the self-diffusion 
coefficient of oxygen in the case of scales with a 
defective anionic sublattice (MeOl-~ or Meal+u). 
Equation 16 is a modified form of the Mott- 
Gurney equation [50]. 

Engell [21], Pettit [22] and Mrowec [23-25] 
have shown that the gradient of defect concentra- 
tion in the growing oxide layer on iron, cobalt, 
nickel and copper is linear as was anticipated. 
This gives grounds for the presumption that the 
linearity is a general rule and hence that a 
simplified form of Equation 16 can be used 
without limitations. 

Table I shows selected values of self-diffusion 
coefficients of cobalt and copper in oxides of 
these metals calculated by the Fueki-Wagner 
method (Equation 8) and with the simplified 
Equation 16. It follows from this that both 
methods of calculation lead to practically the 
same results, which confirms the possibility of 
application of Equation 16. 

It is worth mentioning that to calculate the 
diffusion coefficient from Equation 16 only the 
degree of defect ionization, p, is needed, per- 
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formance of the oxidation measurements at 
different oxygen pressures being unnecessary. 
Moreover, such calculations can be performed 
both for the scales of the p-type (Mel-~O or 
MeOl+~) and n-type (Mel+~O or MeOl-~), 
whereas the Fueki-Wagner method can be 
applied only to oxides of the p-type. On the 
other hand, one should remember that Equation 
16 was obtained by assuming the linear dis- 
tribution of defect concentration in the scale 
and can be applied only when this assumption is 
valid. 

3. Two stage oxidation method 
The methods of calculating self-diffusion co- 
efficients of metal or oxygen in semiconducting 
oxides described above are based on the rela- 
tionship which exists between the parabolic rate 
constant of growth of a compact oxide layer and 
the diffusion coefficient of this reagent which 
takes part in the process of matter transport 
through the scale. From the theory of diffusion 
in solids it follows that the self-diffusion coeffi- 
cient is a product of two parameters: the defect 
diffusion coefficient, Da, and their concentration 
expressed in molar fractions Na [5, 6]: 

D = DaNa. (17) 

This relation pertains to the thermodynamic 
equilibrium between the crystal and its sur- 
roundings, i.e. to the gradientless conditions. In 
the growing scale, however, there exists a gradient 
of defect concentration, and since ionic and elec- 
tronic defects possess opposite electric charges, 
their diffusion has an ambipolar character. 
Considerably more mobile electronic defects 
accelerate the diffusion of ionic defects and 
hence the diffusion coefficient of the latter is 
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larger. In these conditions the chemical diffusion 
coefficient is used, which is related to the defect 
diffusion coefficient by the following equation: 

/3 = (1 + p)Da. (18) 

Comparing Equations 17 and 18 with Equa- 
tion 16 the following relationship between the 
parabolic rate constant and chemical diffusion 
coefficient and concentration of defects in the 
scale is obtained: 

k p ' =  /~Nd. (19) 

It follows from the above equation that the 
parabolic rate constant, kp' is a direct measure 
of a product of two important parameters which 
cannot be determined independently on the basis 
of conventional kinetic measurements. Rosen- 
berg [51] has shown, however, that by carrying 
out the measurements of kinetic of metal 
oxidation in two stages - with an interval 
between them to allow the Me-MeO-O2 
system to reach the state of equilibrium - the 
chemical diffusion coefficient and the equilibrium 
defect concentration can be determined simul- 
taneously. Application of this method is 
possible when the process of metal oxidation 
follows the parabolic rate law and when the scale 
formed on a metal is monophasic, compact and 
adheres closely to the metallic core. Growth of 
the scale occurs by diffusion of only one reagent 
- a metal or oxygen - when the type of defect 
structure must be known in order to anticipate 
which reagents take part in transport of matter 
through the scale. Finally, distribution of the 
defect concentration in the growing layer of the 
scale should have a linear character. 

As seen from the above considerations the 
Rosenberg method requires the same conditions 
as the Fueki-Wagner method with the additional 
condition that the gradient of the defect con- 
centration in the growing oxide layer is linear. 
As already mentioned there exist grounds for the 
assumption that the distribution of defect 
concentration in compact monophasic scale 
follows the parabolic rate law. 

The principle of the Rosenberg's method is as 
follows. A metal is oxidized in isothermal and 
isobaric conditions in a system enabling con- 
tinuous kinetic measurements to be made. After 
a compact oxide layer of thickness x0 has been 
formed on the sample surface, the oxidation is 
terminated by removing oxygen from the reac- 
tion space. As a result the metal-scale-oxygen 
system passes spontaneously to equilibrium, the 

partial pressure of oxygen in the apparatus being 
led to the value equal to the dissociation pressure 
of the oxide. In these conditions, the concentra- 
tion of defects in the layer of oxide formed 
reaches the same value over its entire cross- 
section, corresponding to thermodynamic 
equilibrium with the metallic phase. This is 
illustrated schematically in Fig. 6. 
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Figure 6 The distribution of defect concentration in oxide 
scales on metals after thermodynamic equilibrium in the 
Me-MeO-O2 system was attained. Broken lines denote 
distribution of defect concentration in the scale before 
oxidation was interrupted. 

After the process of homogenization has 
finished, oxygen is readmitted to the reaction 
space and measurement of further growth of the 
oxide layer is continued. Oxidation now takes 
place in an entirely different manner to that 
during the initial period of oxidation, i.e.before 
the break in the reaction. The scale layer has 
been saturated during the homogenization with 
the metal, which for p-type oxides corresponds 
to a minimal concentration of cationic vacancies 
or interstitial anions, and for n-type oxides to a 
maximal concentration of interstitial cations or 
anion vacancies. When oxygen is readmitted to 
the reaction space, the concentration of metal in 
the surface layer of the scale decreases rapidly 
due to the increase of cationic vacancies or 
interstitial anions (p-type oxides), or to the 
decrease in concentration of interstitial cations 
or anionic vacancies (n-type oxides). As the 
reaction proceeds, the concentration of defects 
is gradually changed, due to the diffusion 
processes, in the deeper layers of the scale, and 
leads eventually to restoration of the linear 
gradient of defect concentration in the scale 
which existed before the break in oxidation. 
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Figure 7 Changes in the distribution of defect concentra- 
tion in p- or n-type scale after readmittance of oxygen to 
the reaction space. Horizontal lines denote the distribu- 
tion of defect concentration in the scale before the 
introduction of oxygen (equilibrium in the Me-MeO-O~ 
system). 

Fig. 7 shows, schematically, successive stages 
of changes in the distribution of defects in the 
scale after readmitting oxygen to the reaction 
space. 

Considering the process of the growth of the 
scale after the break in oxidation from the point 
of view of the diffusion theory, we can dis- 
tinguish two limiting stages. In the first, the 
diffusion processes take place only in the external 
part of the scale layer whereas the internal part, 
close to the metallic phase, is in a state of 
thermodynamic equilibrium. Therefore, we con- 
sider this case to be diffusion in a sem-infinite 
system. It should be noted that atthis stage of the 
reaction, only oxide is oxidized without involving 
a metallic base in the process of oxidation. 

After restoration of the linear gradient of 
defect concentration in the scale, the oxidation 
process passes into the second stage. Diffusion in 
the scale takes place under steadystateconditions 
if we neglect the fact that increment of the layer 
thickness, Ax, in this period is much smaller in 
comparison to the initial thickness xo(Ax ~ Xo). 

It follows from the above considerations that 
oxidation after readmitting oxygen to the reac- 
tion space has a paralinear character, as shown 
schematically in Fig. 8. In the initial period the 
scale behaves as a semi-infinite diffusion system, 
which binds oxygen at a rate determined by 
changes in defect concentration in this layer 
(parabolic course). In the later period of the 
reaction, on the other hand, the gradient of 
defect concentration in the scale reaches a 
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Figure 8 Paralinear course of oxidation after readmittance 
of oxygen to the reaction space. 

practically constant value, because the increment 
of the scale thickness at this stage of the process 
is negligibly small in comparison to the initial 
thickness x0 (linear course). 

The second Fick's law for the case under 
consideration was solved by Rosenberg. The 
complex equation obtained has two simple 
limiting solutions. The parabolic fragment of the 
kinetic curve, shown in Fig. 7, is described by the 
equation: 

( ~ )  = (1.128 CaD)t 1/~ (20) 

The linear course of the reaction, observed in 
its further stages, is given by the equation: 

= + (21 )  
\ Xo] 5 

where (Am~q) is the mass of oxygen bound by a 
unit surface area, i.e. the unit weight gain of the 
sample under oxidation, Ca is the concentration 
of defects in the scale at the phase boundary at 
which they are formed: for p-type oxides this is 
the concentration of  cation vacancies or inter- 
stitial anions in a crystal of the Mel-uO or 
MeOl+u type which is in equilibrium with 
oxygen at the pressure at which the second stage 
of oxidation was carried out. In the case of an 
n-type oxide, on the other hand, this is a con- 
centration of interstitial cations or anion 
vacancies in a crystal Me~+~O or MeO~_~ in 
equilibrium with the metallic phase, i.e. at an 
oxygen pressure equal to the dissociation 
pressure of a given oxide. (The concentration Ca 
is expressed in g or g atoms cm -a depending on 
the units in which the weight gain, Am, is given.) 

Equation 20 describes correctly the parabolic 
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course of the reaction when the following 
condition 

t <~ x~ ~ (22) 
D 

whereas Equation 21 can be applied to the linear 
fragment of the kinetic curve when : 

X0 2 
t > ~-~" (23) 

The above given equations can be written in 
another form, which is more suitable for 
graphical interpretation: 

( 7 )  = k p t ~ / 2 +  Cp (24) 

and 

( ? ! )  = k l t + ( C i -  Cp) (25) 

where kp = 1.128 Ca/5, is a parabolic rate 
constant of the reaction in its initial period 
(semi-infinite system), kl = /sCa/xo, is a linear 
rate constant of oxidation in the second stage 
(steady state conditions). Constant Cp is a 
measure of perturbations of the parabolic 
reaction course which may occur in the first 
moments after readmittance of oxygen to the 
reaction space. 

Values of Cp different from zero may result, 
among the other factors, from a non-fixed 
oxygen pressure in the vicinity of the scale 
surface. Depending on the character of these 
perturbations, constant Cp may assume a 
positive or negative value: this is taken into 
account in the calculations. Constant Ci - after 
taking into account correction Cp-  determines, 
the value of the expression XoCd/3. 

The values of constants k v and Cp can be 
determined from the initial section of the 
paralinear kinetic curve by plotting the kinetic 
data in the form (Am~q) versus s/t. This plot 
should yield a straight line, the slope of which 
gives the value of kp and the value of the 
ordinate axis at t = 0 determines the value of 
Cp as shown in Fig. 9. This plot enables the 
simultaneous determination of the time interval 
in which the process follows a parabolic rate law, 
i.e. the scale resembles a semi-infinite diffusion 
system. In the next stage, the curve gradually 
passes into its linear course which leads to 
positive deviations of the experimental points 
from the straight line (Fig. 9). 

/ /  / 

z / / / / / / /  / /  ~," j / /  

, ~ p  < 0  

Figure 9 Parabolic pIot of  oxidat ion dur ing  the first 
s tage o f  the reaction. 

Constants kl and CI are determined from the 
linear section of the kinetic curve plotted in the 
form (Am~q) versus t (Fig. 10). 

t 
Figure 10 Paral inear  course of  oxidat ion over the  whole 
stage o f  oxidat ion after readmit tance  o f  oxygen to the 
react ion space. 

As kp, kl and Cp and C1 can all be determined 
from one kinetic curve, it may be possible to 
calculate, for given experimental conditions, the 
chemical diffusion coefficient and equilibrium 
concentration of defects in the oxide forming a 
scale, simultaneously. The lattice parameters are 
related to the empirical constants by the 
following equations : 

/5 = {1.128  iXo? 
\ ~ ] (26) 

(kp/1.128) z 
Cd -- ktxo (27) 

and 

3 ( C I -  Cp) 
C d =  

Xo 
(28) 

1969 
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It can be seen from the above equations that if 
the parabolic and linear constants of the 
paralinear course of the reaction of further 
oxidation are known, this is sufficient informa- 
tion for determination of the values of both /5 
and Ca. The value of Ca can also be calculated 
from the values of G and C 2 (Equation 28). 

The correct values of D and Ca from the 
kinetic method can be obtained if the following 
conditions are fulfilled: 

1. The oxide layer is compact in its entire 
cross-section and adheres well to the metallic 
core in all the stages of  the experiment. 

2. Growth of scale follows a parabolic rate law. 
3. The surface of the scale is smooth micro- 

scopically (the roughness coefficient R - 1). 
4. The period of homogenization of the 

pre-oxidized sample of a metal exceeds the value 
of Xo2//5. The measurement of kp is performed 
over a time considerably shorter than xo~//5 and 
the measurement of kl over a time longer than 
Xo~/2/5. 

It follows from this that for rational planning 
of the experiments it is necessary to know the 
order of magnitude of /5 .  If  estimation of this 
value cannot be made, the appropriate thickness 
of the initial oxide layer, x0, should be deter- 
mined in preliminary measurements. This thick- 
ness should be selected in such a way that the 
period of the parabolic course of the reaction is 
sufficiently long to enable kp to be determined 
with a high accuracy. On the other hand, this 
period cannot be too long because the increment 
in the scale thickness during the whole period of 
determination of the kinetic curve should be 
considerably smaller than x 0. 

It can be shown that at the present stage in 
the development of the technique of kinetic 
measurements, the defect concentration in the 
scale can be determined even at such low defect 
concentration as 1015 cm -~. This corresponds to 
concentrations of the order of 10 -~ at ~o which 
is two orders of magnitude lower than the low- 
est concentrations measurable by the other 
methods. 

Another advantage of the method under 
consideration results from the possibility of 
repeating the measurements of /5  and Ca on the 
same sample, without removing it from the 
reaction space. After the first measurement of 
constants kp, kl, Cv and C~ at a given thickness 
of the oxide layer, x0, oxygen can again be 
removed from the apparatus and after the 
homogenizing, the new cycle of the measure- 
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ments can be repeated, taking into account the 
small increase in the oxide layer. This cycle can 
be repeated several times not only for estimating 
the reproducibility of the measurements but 
also for determination of the dependence of D 
and Cd on temperature and oxygen pressure. 

The method described above has been used for 
several systems [51-53, 8]. Comparison of these 
results with those obtained by the classical 
methods has been made recently by Fryt et al. 
[7, 9] for the Co-Co1-~O-O2 system. This 
system was selected for the same reasons as in the 
case of verification of the Fueki-Wagner 
method: not only has the self-diffusion coeffi- 
cient of cobalt in this oxide been determined as a 
function of temperature and oxygen pressure 
[36, 40] but also the chemical diffusion coefficient 
[41, 43] and equilibrium concentration of 
defects [37-39, 42] in this oxide are known. 

The studies were performed in a simple 
thermogravimetric apparatus [7] enabling con- 
tinuous measurement of increase in weight of the 
oxidized sample with an accuracy of the order of 
10 .4 g. The required partial pressure of oxygen 
in the reaction space was provided by the 
appropriate composition of the argon-oxygen 
mixture, which under the pressure of 1 atm, 
passed through the apparatus with a flow rate of 
20 1/h -1. The experiments were performed in the 
temperature range 1000 to 1200~ and the 
oxygen pressure ranged from 3 • 10 -~ to 1 
atm. 

The thickness of the initial layer of the oxide, 
x0, was estimated, based on values o f /5  deter- 
mined by Price and Wagner [41 ]. Depending on 
the reaction conditions, this thickness lay 
between 0.055 and 0.083 cm. The initial layer of 
oxide of required thickness x0 was obtained by 
oxidation of the metal sample at a temperature 
of 1100 or 1200~ in a normal atmosphere. 
The temperature was then fixed at that of the 
following experiment and purified argon was 
passed through the reaction chamber.The partial 
pressure of oxygen in argon was about 10 .6 
atm, which was higher than the dissociation 
pressure of cobaltous oxide in this temperature 
range. However, under these conditions the 
oxidation process was hindered, as shown by 
the constant weight of the sample during treatment 
with argon. This is understandable as the oxidation 
process is practically stopped at that oxygen pres- 
sure which is close to the dissociation pressure of 
a given oxide. Thus, although from the thermo- 
dynamic point of view the Co-CoO-O2 system 
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could not reach a state of equilibrium, for kinetic 
reasons, the defect concentration in cobaltous 
oxide was established at the value corresponding 
to equilibrium with metallic phase. 

After homogenization, the stream of the 
argon-oxygen mixture was introduced into the 
reaction chamber and the kinetics of the scale 
growth were registered. After completing one 
cycle the system was again equilibrated and the 
measurement cycle was repeated at another 
oxygen pressure. The same procedure was 
applied to the whole temperature range studied 
and the measurements were repeated for several 
samples. 

4- / /  

/ /  ~.es 
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Z V ~)" ,,~.. / /  
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t rain 
Figure 11 Paralinear course of oxidation of cobalt at 
1200~ for several oxygen pressures after readmittance of 
oxygen gas to the reaction space. 

Fig. 11 presents a set of curves obtained at 
1200~ for several values of oxygen pressure. 
Similar results were obtained at other tempera- 
tures. As seen f rom the plot, the kinetic curves 
obtained have a paralinear character. The slope 
of linear sections of these curves may be used to 
calculate the constant kl, and values of ordinates 
obtained at points of  intersection of these straight 
lines with the ordinate axis gave values of  C1. 

To determine the values of ko and CD the 
results of the measurements in the initial stage of 
oxidation were plotted in the parabolic system of 
ordinates [(Am/q) versus #t]. As seen from the 
plot in Fig. 12 the course of  oxidation in this 

HH o 1200~ 

- -  / / t~?  

0 I 2 3 4 5 l0 15 20 30 a0 50 (~t) 70 80 s I~Q 

ff min '/' 
Figure 12 Parabolic plot of first stage oxidation of 
cobalt at 1200 ~ C for several oxygen pressures, after re- 
admittance of oxygen to the reaction space. 

system of co-ordinates is linear and hence the 
values of kp can be calculated f rom the slopes 
of these lines. In the case under study, Cp = 0. 
Using these values of  kp, kl, Cp and C1, con- 
centrations of  cation vacancies and chemical 
diffusion coefficients in cobaltous oxide were 
calculated using Equations 26 to 28 as a function 
of temperature and equilibrium oxygen pressure. 
Some results of these calculations are shown in 
Figs. 13 to 16. It  follows f rom these plots that the 
defect concentration is a function of temperature 
and equilibrium pressure of oxygen as follows: 

(12 500~ 
Nvco = 1.26po~ 1/3"s5 exp \---R-~ ] (29) 

where Nvco is the concentration of cationic 
vacancies in cobaltous oxide (in molar fractions). 

The chemical diffusion coefficient, on the 
other hand, is independent of  the oxygen pres- 
sure and is a function of temperature as follows: 

Dcoo = 6.6 x 10 -3 

( 2412T400~ 2 ] c m  sec -1 . (30) exp 
\ 

Fisher and Tannhauser [42], Eror and Wagner 
[38] and Koel and Gellings [43] have deter- 
mined the equilibrium concentration of cation 
vacancies in cobaltous oxide as being dependent 
on temperature and oxygen pressure from 
thermogravimetric measurements of  deviations 
from stoichiometry in this oxide. In addition, 
Price and Wagner [41] and Koel and Gelling 
[43] have determined the chemical diffusion 
coefficient in cobaltous oxide and its temperature 
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Figure 13 The dependence of equilibrium concentration of 
cation vacancies in cobaltous oxide on oxygen pressure 
for several temperatures. 
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Figure 14 The Arrhenius plot of the temperature depen- 
dence of the equilibrium concentration of defects in 
cobaltous oxide for several oxygen pressures. 

dependence using a thermogravimetric method 
and by electrical conductivity measurements. The 
results of these studies can be summarized in 
the form of the following empirical equations: 
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Nvco = 0.94 • 10-1po~ 1/a.sG 

( _  7200~ 
exp R T  ] (31) 

(Tannhauser and Fisher) 

Nvco = 0.95 x 10-1po2 t/a-s 

exp (-  65001 
R T  ] (32) 

(Eror and Wagner) 

Nvco = 1.45 x 10-1po2 ~/4.~ 

( __ 7800/ 
exp 

RT ] 

/~coo = 4.33 x 10 -a 

(33) 

(Koel and Gellings) 

( 240o01 
exp R T  ] cm2 sec-* (34) 

(Price and Wagner) 

/5coo = 8.3 x 10 -3 

exp ( 24000~ cm ~ sec -1 (35) 

(Koel and Gellings) 

Comparison of Equation 30 with Equations 34 
and 35 shows a good agreement between the 
results of studies on the chemical diffusion 
obtained with kinetic and classical methods. The 
results of studies on the defect concentration 
show that the agreement is only observed for the 
dependence of this concentration on the oxygen 
pressure (practically the same exponents at the 
oxygen pressure in Equations 29 and 31 to 33). 
The heat of defect formation determined by the 
kinetic method (Equation 29) is, however, 
considerably higher than that determined by the 
classical method. This is probably due to the fact 
that the kinetic method gives the total con- 
centration of defects, whereas with the other 
methods only the concentration of the pre- 
dominant defects, related to the deviation from 
stoichiometry, is determined. This problem was 
the subject of a previous paper [54]. 

It has been mentioned previously that the 
self-diffusion coefficient of a metal or oxygen in 
oxides is related to the chemical diffusion 
coefficient and equilibrium defect concentration 
by a simple equation (Equation 1). For the case 
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under discussion, this equation can be written in 
the following form: 

/5COO Nco 
= (36) Dco 1 + p 
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Figure 15 The dependence of the chemical diffusion 
coefficient in cobaltous oxide on oxygen pressure for 
several temperatures. 
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Figure 16 The Arrhenius plot of the temperature depen- 
dence of the chemical diffusion coefficient in cobaltous 
oxide. 

In the range of temperatures and oxygen 
pressures studied cation vacancies in cobaltous 
oxide are singly ionized (the exponent at the 
oxygen pressure in Equations 29 and 31 to 33 
being close to ~). Hence p = 1 and Equation 36 
assumes the form: 

Dco = �89 �9 (37) 

Replacing /3coo and Nco in Equation 37 by 

Equations 29 and 30 one obtains the following 
equation for the dependence of the self-diffusion 
coefficient of cobalt in cobaltous oxide on the 
oxygen pressure and temperature: 

Dco = 8.3 x 10-3po~ 1/~.s5 
( 37 800~ 

exp R T  ] cm2 sec-1 (38) 

As already mentioned, the self-diffusion 
coefficient of cobalt in Co1-~O has been deter- 
mined with high accuracy over a wide range of 
temperatures and oxygen pressures by Carter 
and Richardson [36] and recently by Chen et aL 
[40] by radioisotope methods. Since Chen et al. 
carried out their measurements at only one 
value of the oxygen pressure, equal to 0.21 arm, 
comparison of the results obtained with those of 
the radioisotope methods has been limited to 
this value of oxygen pressure only. Empirical 
Equation 38 assumes for this case the following 
form (po~ = 0.21 atm): 

Dco = 5.2 x 10 -3 

( exp R T  ] cm2 sec-1 (39) 

(Mrowec et al., two stage kinetic method) 

The results of Chen et al. [40] and Carter and 
Richardson [36] for the same value of oxygen 
pressure, can be written as: 

Dco = 5.0 • 10 -3 ( 38 400  
exp RT ] cm2 sec 1 (40) 

(Chen et al., radioisotopic method) 

Dco = 5.2 • 10 -z ( 38-~176176 
exp R T  ] cm2 sec-1 (41) 

(Carter and Richardson, radioisotopic method) 

Finally, it is worth comparing the data given 
above with Equation 15 which gives the tempera- 
ture dependence of Dco for the oxygen pressure 
of 0.21 atm, as determined by the Fueki-Wagner 
method : 

Dco = 5.0 x 10 -~ 
( 378001 

exp R T  ] cm2 sec-1 (42) 

(Mrowec et al. differential kinetic method) 

Comparison of Equation 30 with Equations 
34 and 35, and Equations 39 and 42 with Equa- 

l 973 



S T A N I S L A W  M R O W E C  

~ 
1050 1000 950 

gF '~ 

I ~  �9 Chen et al. 
[3 lrowec et aL (Rosenberg 

method ) 
�9 Mrowec et al.(Fueki-Wagner 

method) 

I000 K-' 
T 

Figure I7 Temperature dependence of the self-diffusion 
coefficient of cobalt in cobaltous oxide for several oxygen 
pressures in Arrhenius system of co-ordinates. 
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Figure 18 Temperature dependence of the equilibrium 
defect concentration in cobaltous oxide. 

tions 40 and 41 shows an exceptionally good 
agreement between the data of chemical dif- 
fusion coefficients and self-diffusion coefficients 
obtained using kinetic and classical methods. 
This agreement pertains not only to the values of 
activation energies of the diffusion of cation 
vacancies and cobalt ions in cobaltous oxide, but 
also to the absolute values o f / )coo  and Dco in 
the entire range of temperatures and oxygen 
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pressures studied. Practically identical values of 
pre-exponential factors in Equations 39 to 42. 

Figs. 17 and 18 give the results obtained by 
different authors in studies on defect concentra- 
tions and self-diffusion coefficients for a wide 
range of temperatures and oxygen pressures. 
The plots shown in these figures confirm the 
agreement between the results obtained with 
kinetic and other methods. 

4. C o n c l u s i o n s  
The discussion presented above leads to the 
following conclusions on the possibility of 
applying kinetic methods to the study of the 
concentrations and mobility of point defects in 
metal oxides: 

1. There exist two new methods for studying 
self-diffusion coefficients of a metal or oxygen in 
semiconducting oxides, based on measurements 
of the kinetics of metal oxidation. These methods 
can be used when an oxide layer, formed on the 
metal surface, is compact, closely adherent to the 
metallic core and its growth is governed by a 
parabolic rate law. In these cases the parabolic 
rate constant of oxidation can be used in calcula- 
tions of the self-diffusion coefficient of this 
component of the oxide, the diffusion of which is 
responsible for the growth of the oxide layer. 

2. When the studied oxide is a p-type semi- 
conductor with the deficit of  a metal (Mel-~O), 
then the self-diffusion coefficient of a metal can 
be determined as being dependent on the oxygen 
pressure and temperature by both the Fueki- 
Wagner and Rosenberg methods. This also 
applies to studies of self-diffusion coefficients of 
oxygen in p-type oxides with an excess of 
oxygen (MeOl+~). The coefficient D~e or Do 
determined under these conditions corresponds 
to the equilibrium of the oxide with oxygen at the 
oxygen pressure at which the oxidation process 
was carried out. 

3. In the case of oxides of n-type with an 
excess of metal (Me~+yO) or deficit of oxygen 
(MeOa-v) the Fueki-Wagner method cannot be 
used, because the rate of growth of this type of 
scale is practically independent of the oxygen 
pressure over wide limits. In this case, the self- 
diffusion coefficient of metal or oxygen may be 
determined by the Rosenberg method or calcula- 
ted directly from the parabolic rate constant with 
the aid of the modified Mott-Gurney equation. 
In this latter case, it is necessary to know the 
degree of ionization of defects involved in 
diffusion of the metal or oxygen ions.The self- 
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di f fus ion  coeff ic ient  d e t e r m i n e d  in  this  w a y  
c o r r e s p o n d s  to  e q u i l i b r i u m  o f  the  s tud ied  ox ide  
wi th  the  meta l l i c  phase .  

4. T h e  R o s e n b e r g  m e t h o d ,  cons i s t ing  o f  a 
two-s t age  ox ida t ion ,  enab les  the  s imu l t aneous  
d e t e r m i n a t i o n  o f  chemica l  and  self -dif fusion 
coeff icients  and  defect  c o n c e n t r a t i o n  f r o m  one  
k ine t ic  curve.  T h e  m e a s u r e m e n t  can,  m o r e o v e r ,  
be  r epea t ed  o n  the  same  sample  w i t h o u t  
r e m o v i n g  i t  f r o m  the  r eac t i on  space.  I t  shou ld  
also be  n o t e d  tha t  the  defects  ( the c o n c e n t r a t i o n  
o f  wh ich  is d e t e r m i n e d  by the  R o s e n b e r g  
m e t h o d )  c o m p r i s e  b o t h  ext r ins ic  defects  re- 
spons ib le  for  the  dev i a t i on  f r o m  s t o i c h i o m e t r y  
and  in t r ins ic  ones  ( F r e n k e l  and  Scho t tky  type  
defects).  

5. K ine t i c  m e t h o d s  are  cons ide rab ly  s imple r  
t h a n  classical  r a d i o i s o t o p e  m e t h o d s  and  resul ts  
o f  these m e a s u r e m e n t s  h a v e  a h ighe r  accu racy  
t h a n  the  classical  me thods .  H e n c e  k ine t ic  
m e t h o d s  shou ld  be  genera l ly  app l i ed  in s tudies o f  
c o n c e n t r a t i o n  and  m o b i l i t y  o f  p o i n t  defects  in 
me ta l  oxides ,  in pa r t i cu l a r  in those  c o m p o u n d s  
in wh ich  d e t e r m i n a t i o n  o f  these  p a r a m e t e r s  by 
classical  m e t h o d s  is ve ry  difficult  o r  imposs ib le .  
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